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A description is given of the parallelization algorithms and results for two codes
used extensively to model edge plasmas in magnetic fusion energy devices. The
codes are UEDGE, which calculates two-dimensional plasma and neutral gas profiles
over long equilibrium time scales, and BOUT, which calculates three-dimensional
plasma turbulence using experimental or UEDGE profiles. Both codes describe
the plasmabehavior using fluid equations. A domain decomposition model is used for
parallelization by dividing the global spatial simulation region into a set of domains.
This approach allows the use of a recently developed Newton—Krylov numerical
solver, PVODE. Results show nearly an order of magnitude speedup in execution
time for the plasma transport equations with UEDGE when the time-dependent sys-
tem is integrated to steady state. A limitation that is identified for UEDGE is the
inclusion of the (unmagnetized) fluid gas equations on a highly anisotropic mesh.
The speedup of BOUT scales nearly linearly up to 64 processors and gets an ad-
ditional speedup factor of 3—6 by using the fully implicit Newton—Krylov solver
compared to an Adams predictor corrector. The turbulent transport coefficients ob-
tained from BOUT guide the use of anomalous transport models within UEDGE,
with the eventual goal of a self-consistent couplingg 2002 Eisevier Science

Key Words:parallel computation; edge plasma; plasma transport; plasma turbu-
lence; Newton—Krylov.

1. INTRODUCTION

The goal of this work is to develop numerical codes for simulation of edge plasm
for magnetic fusion energy (MFE) devices that exploit the power of parallel compute
Understanding edge plasmas is central to the problems of high heat flux from plas
power exhaust, adequate helium-ash removal, and sufficient edge temperature to re
turbulent core transport, all recognized as critical issues for magnetic fusion reactors. Pr
assessment of these issues requires detailed computer codes. Over the last several
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we have witnessed a period of unprecedented growth in the computer power avail
for modeling physical problems. To utilize this computational power, one needs to me
the shift from coding for single processors to coding for multiprocessor computers. F
codes with explicit time advancement, this shift is relatively straightforward because ol
neighboring quantities enter expressions for the solution at each time step. However, n
physical problems, including fusion edge plasmas, contain various phenomena that y
a wide range of time scales that render their descriptive equations “stiff” in the numeris
sense. Here, implicit methods are especially useful in achieving acceptably large time st
but implicit methods require solution of large algebraic systems and thus present a big
challenge for parallelization compared to explicit methods.

The simulation of edge plasmas has many time scales because of the simultaneous
eling of ion and electron transport along and across a confining magnetic field, together
neutral particle processes. Here we describe the parallelization of two codes that simt
the edge-plasma region in tokamak devices: UEDGE [1] solves for the slowly evolving tw
dimensional (2-D) profiles of a multispecies plasma and neutrals given some anomal
cross-field diffusion coefficients, and BOUT [2] solves for the three-dimensional (3-D) tu
bulence that gives rise to the anomalous diffusion. These two codes are thus complemel
in solving different aspects of the edge-plasma transport problem; UEDGE needs BOU
turbulent transport results, while BOUT needs UEDGE's plasma profiles. Each code
take from a day to weeks on single-processor computers for large problems with the lor
times being for the turbulence simulations. An essential step to coupling these calculati
is speeding up their individual execution times since many iterations may be needed f
consistent solution.

This parallelization work benefits from the development of two related parallel implic
solvers by Hindmarsh and Taylor [3]: PVODE solves a system of time-dependent ordin
differential equations (ODES), and KINSOL solves a system of nonlinear equations typice
aimed at finding steady-state solutions. In this paper, we only consider the PVODE sol
The serial versions of these Newton—Krylov solvers, VODPK [4] and NKSOL [5], have be«
used very productively for the serial version of UEDGE. However, our experience [1, 6] a
that of others [7] on serial computers shows that for such solvers to work well for UEDG
this strongly nonlinear system of equations must be well preconditioned. The aim of
preconditioning step is to solve a closely related problem in a more efficient but approxim
manner, thereby yielding a more easily solved problem for the Krylov method [4, 5]. Tht
part of our work for UEDGE focuses on development of a parallel preconditioner bas
on a domain decomposition model [8]. This Fortran preconditioner is interfaced to t
C-language solvers PVODE and KINSOL [3] on a variety of parallel computer platforn
ranging from the massively parallel T3E computer to shared-memory workstations w
multiple processors (SUN and DEC). This aspect of our work demonstrates, for a comg
problem, how one can reuse existing Fortran coding and, with moderate extensions, ut
recently developed implicit parallel solvers.

Another element of portability is provided by implementing message passing betwe
multiple processors by using the message-passing interface (MPI) package [9]. This pacl
is available on many different platforms and allows one to utilize either shared memory
individual processor memory without changing the code. With MPI, one can now u
processors on one computer or a network of computers.

The impact of domain decomposition on Newton—Krylov preconditioning methods f
the 2-D plasma transport equations has been studied by kKhall [10] using a serial
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computer (one processor). Our UEDGE work is related but differs in that we solve 1
domain-decomposed system on a parallel computer, include the full multiply connec
toroidal geometry with coupling between two internal boundaries rather than a slab g
metry, and focus on a time-dependent solution method with expanding time step to re
steady state. We consider the speedup of the complete nonlinear calculation, while Ref.
compares the effectiveness of different domain blocking strategies on the inner itera
count for the Krylov solver. Also, the domain-decomposition work in Ref. [10] uses tt
transpose-free QMR algorithm for the inner iteration loop, whereas we always use
generalized minimum residual (GMRES) method. We shall show that our specific examj
are dominated by the Newton—Krylov work and only secondarily by the formation of ti
preconditioning matrixP, while the examples in Ref. [10] are dominated by the formatiol
of P. We find a similar degradation of the quality of the domain-decomposed preconditiol
owing to the loss of information by omitting coupling between the domains as reportec
Ref. [10]. For the work presented here, the primary gain in “wall-clock” execution tim
arises from the parallelization, which is degraded somewhat by the domain preconditio

The 3-D BOUT code is parallelized using the same general domain-decomposition mc
as UEDGE, but our emphasis for BOUT is somewhat different. First, since BOUT mt
follow the rapid fluctuations of the turbulent fields, we compare two fully implicit scheme
for advancing the equations in time and show how the scheme using the Newton—Kry
method is much superior to a predictor—corrector method. Second, we find that the imp
BOUT works well without a preconditioner in that omy6 Krylov vectors per Newton
iteration are needed. This latter fact leads to the straightforward parallelization of BO!
with a nearly linear speedup in computational time with the number of CPU processors
contrast to UEDGE, which often take very large time steps to find an equilibrium and ne«
a preconditioner, the good performance of BOUT without a preconditioner is related to
smaller time step required to resolve the turbulent fluctuations. Like UEDGE, the para
version of BOUT uses MPI for portability.

The plan of the paper is as follows: In Section 2, the geometry and basic equations
the edge-plasma problem are given. The domain-decomposition model used for UEL
and BOUT is also described in Section 2. The results for the UEDGE parallelization
shown in Section 3. The BOUT results from the fully implicit solver and parallelization al
given in Section 4. The conclusions are summarized in Section 5.

2. EQUATIONS, GEOMETRY, AND ALGORITHMS

2.1. Basic Equations

The basic models in the UEDGE and BOUT codes begin with the plasma fluid equati
of continuity, momentum, and thermal energy for both the electrons and ions in the fc
given by Braginskii [13]. The continuity equations have the form

on )
ﬁ + V.- (NgiVei) = Se,p 1)

wherene; andve; are the electron and ion densities and mean velocities, respectively. T
source terrrfSeFfi arises from ionization of neutral gas and recombination.
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The momentum equations are given by

OVei
e, a?l

+ MeiNeiVei - VVei = —VPei + (Nei(E + Vei x B/C)
_V'He,i_Re,i“FSmiy (2)

e,

wheremg; are the massepe; = Ne; Tei are the pressures witha; being the temperatures,
g is the particle chargé; is the electric fieldB is the magnetic field; is the speed of light,
Il; are the viscous tensors, aRd; are the thermal forces [13]. The souig® contains
a sink term—nm gv; S‘?e that arises if newly created particles have no drift motion.

The ion and electron energy equations can be written in the form

gna;:'l + gnve,i “VTei + PeiV-Vei = =V -Qei —Iei - VVei + Qej, 3)
whereqe; are the heat fluxes arn@e; are the volume heating terms [13].

In their general three-dimensional form, the 6 plasma equations given above represet
separate partial differential equations fQ nj, Ve, Vi, Te, andT,. UEDGE and BOUT use
somewhat different assumptions to reduce the complexity of their models. Both codes
the classical parallel transport given by Braginskii, but UEDGE uses enhanced perpendic
transport coefficients to model the effect of the turbulence calculated by BOUT. Here pare
and perpendicular refer to directions relative to the magnetic Beld,the calculation of the
electrostatic potentiag;, both codes use the quasineutral conditien= n;, and in addition,
BOUT solves for the parallel magnetic vector potentfs|, UEDGE assumes symmetry
in a third (toroidal) dimension, whereas BOUT allows fluctuations to have variations in
three spatial dimensions even though its equilibrium profiles are toroidally symmetric.

UEDGE also includes the capability of evolving neutral gas species for each type of i
which can be described by models of varying sophistication. The simplest neutral descrip
is a diffusion model, where the neutral density, obeys the continuity equation

%nn + aa_x(nnvnx) + aiy(nnvny) = ({or ve) — (0jVe))NeNn. (4)
Here the neutral velocitiesiny ny, are taken from a diffusion approximation using the
charge-exchange collision frequency between ions and neutrals, and the source and
terms on the right-hand side represent recombination and ionization with rate coefficie
(or ve) @and(oj ve), respectively. We find that the parallelization of this neutral gas equatic
on the highly anisotropic mesh performs more poorly than the plasma equations, a p
we will return to in Section 3.2.

For the 3-D BOUT turbulence simulations, two auxiliary variables and related equatic
are introduced to help solve the system of plasma equations [2]. These variables are
parallel currentj;, and vorticity,zz, and the related equations are Poisson-like equatior
for ¢ and Ay

Vip=w (5)
4

VIA Z—?hr (6)

The ¢ potential equation is not obtained from Poisson’s equation, but rather from t
quasineutrality condition and the current continuity equation. Héferefers to the
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Laplacian operator in the directions perpendicular to the magnetic field. The solutic
to these simple-looking equations, Egs. (5) and (6), have important consequences fo
parallel version of BOUT.

2.2. Geometry

Both UEDGE and BOUT are written in general coordinates that can be adoptedtoa s
cylinder, or torus by the use of the appropriate metric coefficients. For MFE devices, intel
has focused on toroidal devices with an emphasis on tokamaks [14]. The region occu
by the edge plasma for the poloidal plane of a tokamak with a single-null divertor is sho
in Fig. 1. The long, sometimes closed lines of the mesh represent poloidal magnetic
surfaces in which the magnetic field vector lies. For tokamaks, the strongest magnetic
component is in the toroidal direction, out of the plane of the figure.

In the poloidal plane, UEDGE and BOUT use the poloidal flux surfaces as one spa
coordinate, with the second being the curves normal to the flux surfaces shown in Fig.
but a nonorthogonal mesh is sometimes used to conform the mesh to material surfac
the boundary. For BOUT, toroidal variations are allowed in a segment of the torus as she
in Fig. 1b; this segment is periodically replicated to fill out the torus. Thus, the wavelenc
of the longest toroidal mode simulated is set by the length of the toroidal segment use

The numerical discretization schemes used by UEDGE and BOUT are similar in the't
dimensions in the poloidal plane. UEDGE uses a conservative finite-volume method
BOUT uses a finite-difference method including a fourth-order spatial discretization for t
nonlinearE x B inertial velocity terms.

2.3. Implicit Algorithms

The fluid equations solved by both UEDGE and BOUT can be cast in the most gen
form in terms of a system of ODEs

du

at - f(w), (7)
whereu is the vector of unknowns, arfds the result of sources, sinks, and the discretize
spatial transport terms. Since UEDGE is usually seeking steady-state solutions, it strive
take the maximum time step\¢) possible and sometimes works in the limitsf — oo.
BOUT always follows time dependence, but we wish to do so with optimum efficienc
This section sets the background for understanding the algorithms used for UEDGE
BOUT in Sections 3 and 4.

We consider two implicit schemes, one utilizing a predictor—corrector method and 1
other using the Newton—Krylov approach. Our codes presently use the Newton—Kry
algorithm utilizing GMRES, but introducing the predictor—corrector method allows us
make a comparison later in Section 4.2. These schemes are exemplified by the Ad
method and the backward differentiation formula (BDF) method, respectively. For t
Adams method, the advancemenudfom time leveln — 1 to n takes the form

Un = Un_1 + At(oofn + - - - + ax_1fnis1), (8)

wherek is the order of the scheme, tiags are coefficients [15], anfl, = f(u,). For the
BDF method, the advancement is given by

Un = (BrUn—1 + - -+ BkUn_k) + At)/Ofnv (9)
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FIG. 1. The toroidal tokamak geometry simulated by the UEDGE and BOUT codes. In (a), the poloid
plane plot shows the 2-D edge region simulated by UEDGE and the mesh used that has one coordinate bas
magnetic flux surfaces as provided by an MHD equilibrium code. In addition to simulating the poloidal annu
in (a), BOUT allows fluctuations to have toroidal variations that fit periodically into the toroidal segment shov
from the top view in (b). Thus, inclusion on longer toroidal wavelength modes requires using a larger toroi
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where theg’s and y, are coefficients determined by the ordk)y gsed [15]. The Adams
method is usually solved by functional iteration; i.e., an approximatian &t iterationj,
termedu), is obtained by evaluatinig with u)~2; this approach can work well for nonstiff
systems. While the BDF method can also use functional iteration, a more effective met
is often a Newton iteration that expanigsat iterationj as

: _ of :
fuh) ~fu1 + %(u' —ulh. (10)
Equation (9) then is a linear equation fgy that can be written as

(I/Atyo — dul =g, (11)

wherel is the identity matrix and = af/du is the Jacobian evaluated wittirom a previous
iteratation or time step. Alsgiis a vector that depends on valuesidfom the past iteration,
ul~1, and at previous time steps as obtained from Egs. (9 and 10). Equation (11) is usu
solved by an iterative method to an accuracy somewhat better than the estimated err
un—1 from the time advancement; this is known as an inexact Newton method. We shall
a Krylov projection method to solve the linear system [4, 11]. Although more numeric
operations are required for such Newton methods per iteration, they often have supe
overall performance for stiff ODESs since larger time steps can be used, as we shall illust
with a BOUT example. Also, UEDGE requires the inexact Newton method for reasona
performance, and it requires that the system of equations be preconditioned.

Newton schemes that utilize a matrix-free Krylov projection method often require precc
ditioning. The procedure involves solving related linear systeéms- h with a matrixP that
approximates the original matrix but is simpler to solve. By assumg@on (I /Atyy — J).
Noting thatP~'P = I, we may insert this product into Eq. (11) to form the preconditione:
system

[(1/Atye — HPY(PUl) = 0. (12)

The new variables arBu,, and this system is easier to solve by iterative methods sin
(I/Atyg — J)P~1 = A ~ | is more diagonally dominant. Each iteration of the Krylov
method does require matrix—vector produsigwith v being the Krylov basis vector), and
these are done using a matrix-free finite-difference quotient approximatidw tehere

w = P~1v. More detailed descriptions of the Newton—Krylov algorithm are available fror
a number of sources, e.g., Refs. [4, 11, 12].

2.4. Domain-Decomposition Model

UEDGE and BOUT use the same poloidal mesh, and this region can be divided i
domains on parallel computers where separate processors can solve a local problem.
ever, for the edge-plasma problem, there is a set of natural interior boundaries that r
to be identified and accommodated for efficient decomposition. The regions delineatec
these interior boundaries are shown in Fig. 2 for both the tokamak poloidal plane and
corresponding mapping to a rectangular domain. Information needs to be passed from
that touch one of the dotted lines between the private-flux and core regions to the c
along the other dotted line, and vice versa. These interior boundaries are used to acc
for the periodic boundary conditions used within the core region and the continuity-of-fl
condition between the private-flux region 3 and private-flux region 4.
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FIG. 2. The poloidal plane is divided into four main regions for the domain decomposition model, each
which can be further subdivided. The four regions are mapped into the rectangular geometry shown in the Ic
part of the figure by opening the poloidal configuration along the dotted line.

Ifthe selection of the domains is such that the boundaries of major regions 1-4 in Fig. 2
always included in the boundaries of the domains, then the finite-difference representa
in a given domain can be entirely local. Such a domain decomposition is shown in Fig.
where 16 domains are used in the poloidal plane.

The information needed to form the local finite-difference approximations to the deriv
tives at the boundary of the domains is provided by passing the variable data betw
processors (domains) via MPI [9] to fill the guard cells that surround each domain sho
in Fig. 3b. Notice that data needed in a guard cell are not necessarily from the adjac
domain; e.g., the right-side guard-cell data for domain 0 in Fig. 3a come from domain
These guard cells do not contain variables that are advanced for each domain, but rathel
contain only a copy of this information from other processors. The only exception to tt
rule is for UEDGE, which uses exterior guard cells to specify boundary conditions; but he
the boundary conditions are local, so no message passing is required.

The domain decomposition model plays two roles. First, to utilize the implicit PVOD
(or KINSOL) solver [3], we must divide the physical space simulated by our codes
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FIG. 3. (a) Division of UEDGE geometry into 16 regions is shown. (b) More detail of the mesh is show
within the domains together with the overlapping guard cells.

this manner, where each processor, with guard cells, has all of the information requ
to evaluate the right-hand side for its domain. The Newton—Krylov solvers, together w
modest amount of message passing between domains, allows an implicit solution to
global problem. The second role is that the model provides the basis for the preconditior
algorithm that is required by UEDGE. Here the full set of preconditioner Jacobian eleme
in P can be efficiently generated in parallel by finite-difference quotients. For efficienc
PVODE reuse® and its factorization for a number of nonlinear iterations. An approximat
LU factorization of P on each processor is performed using the ILUT routine [11] witt
a drop-tolerance parameter of Foand a row fill-in parameter of 50. We have also usec
simpler routines such as ILU(0) [11], but since the LU factorization is not a significant tin
sink for our problems, we chose to maintain the flexibility of ILUT. Furthermore, sinc
the domain size is typically small compared to full simulation region, one can be more
gressive with LU factorization because it is faster to factor a numbef n x n matrices

than onemn x mn matrix. The overall procedure used here of not including couplin
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FIG. 4. Schematic showing the three major components of the parallel UEDGE code as replicated on €
domain or processor.

between domains at the preconditioning level is referred to as additive-Schwarz with z
overlap [12].

The manner in which UEDGE utilizes the PVODE solver can be most succinctly e
plained by the diagram in Fig. 4. On the left is the main UEDGE calculation of th
finite-difference equations that yield the “right-hand side” of the evolutionary equatio
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for each variable. The central column of Fig. 4 shows the wrappers mentioned previot
that pass data from the Fortran UEDGE code to the C solvers, and vice versa. Finally, or
right is one of the C solvers, PVODE or KINSOL, which were developed previously [3
Note that the foregoing model is replicated for all domains or processors. Communical
between processors as required to fill guard cells is shown by the “MPI send and rece
boxes in Fig. 4.

The parallel model for BOUT is very similar to that just described for UEDGE, exce|
that BOUT is written in C and thus requires no extra interface routines to utilize the
solvers. Since BOUT must follow the time dependence, only the PVODE solver is us
here. Also, as mentioned earlier, BOUT works well without a preconditioner. Some work f
been done on testing preconditioners for even more improvement, but more developme
needed.

3. IMPLEMENTATION AND RESULTS FOR UEDGE

3.1. Implementation

The 2-D plasma transport equations used in UEDGE come from a reduction of th
presented in Section 2.1 for the parameters of the edge plasma. This reduction resul
five equations for the following variables: ion density, ion parallel velocityy; separate
electron and ion temperaturdg,andT; ; and the electrostatic potential, If plasma currents
are ignored, as done in the 2-D examples in Section 3.2, the potential becomes a depel
variable, resulting in four basic plasma equations. In addition, impurity species can
included that have their own density and parallel velocities but a common tempefiature
with the ions. When the neutral gas is included, at least the neutral continuity equation
is solved for each ion isotope.

With UEDGE, we seek efficient steady-state solutions while still retaining the optio
to simulate time-dependent evolution of the profiles when needed. Using large time st
or performing nonlinear iterations to steady state with no time step, requires the use
good preconditioner. Although reduced preconditioners have been tried for this comy
problem, we have found that a full preconditioning matRxcomputed by finite-difference
quotients is needed to effectively obtain solutions for a wide range of parameters. This
is distinct from the finite-difference approximation to the matrix—vector prodwctised
by the PVODE Krylov solver. Such a preconditioner is only updated occasionally during t
nonlinear iteration. We have two options for the parallel UEDGE, either using an algoritt
developed specifically for UEDGE or, because each region in the domain decomposi
model is simply connected yielding band-block-diagonal (BBD) matrices, using the prec
ditioners PVBBDPRE supplied as part of the PVODE package [3]. The UEDGE-speci
algorithm uses a small 2-D “window” that moves across the mesh, providing local Jacok
elements by difference quotients over a restricted range of the right-hand side eva
tions to the 2-D window; nonlocal couplings from the multiple-connected regions are bt
into the algorithm so that it works on either serial or parallel machines. The PVBBDPF
module assumes all couplings are localized to a small neighborhood of a given varia
Here P is a BBD matrix, where each block is generated on one processor and is obtai
from a banded difference-quotient approximation. For the domain-decomposed system
operation counts for the two different methods of calculatthgre nearly the same. The
importance of frequent updatesofor our problem will be shown in the next section.
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To implement the domain-decomposition model, we have written a routine that autom:
cally divides the global mesh in a manner that respects the “natural” boundaries show
Fig. 2. One can specify the number of subdomains in each of these regions; any imbal:
is handled by assigning fewer equations than the average to a minority of processors
typically obtain complete load balancing by a proper choice of mesh sizes and numbe
domains. The routine also sorts through the indexing for the guard cells and provides a |
to specify which processors must exchange boundary data. A set of routines was devel
that deals with passing data from the master processor to domain processors. These
include the initial guess to the global solution, the global geometrical data, and the mapy
index for the guard cells needed for each domain. A similar routine is used to gather the ¢
from all the processors into a global solution at the end of the run. Finally, another se
message-passing routines was constructed to refresh the guard-cell data at the appro
times during the Jacobian and Newton—Krylov steps.

3.2. Results

We run UEDGE on the T3E-600 using the 16 domain configuration shown in Fig. 3 f
the full DIII-D tokamak geometry in Fig. 1a. A couple of factors dictate the use of the 1
domain configuration: We need the internal connections between private-flux regions
the two ends of the core region to occur on domain boundaries (see Fig. 2), and the sp
resolution with load balancing requires that we have about three times the number of ¢
in the SOL as in the core. The computation mesh has 64 poloidal mesh points and 48 re
points so that we can fit the single-domain base case on one processor for direct compa
with the multiprocessor cases.

The input parameters used at the core boundarygre= 150 eV,n; = 2 x 10 m3,
and zero parallel velocity. The anomalous radial diffusion coefficients are set f{s1'm
and the plate particle recycling coefficient is 0.9. The simulation is initialized with a sol
tion obtained for &.; = 100 eV on the core boundary, and we then measure the compu
time required to find the solution when we switchTig = 150 eV on the core boundary.
The results presented only include evolution of the plasma equations for a fixed neu
background. The execution time normalized to that for one processor is presented in Fi
Here PVODE is used to run to steady state with the plasma equations, and two diffel
preconditioners are used, the case markdsting PVYBBDPRE, and the point being
the internal UEDGE preconditioner. In the table below the figure, the data show the nu
ber of function (or right-hand side) evaluations for the Krylov iterations, the number
preconditioner evaluations, the normalized time, and the ideal time. Although the sp:
of the calculation depends somewhat on the preconditioner used, experience with var
approximate preconditioners on serial computers indicates that both work well; errors
the preconditioner typically result in an inability to obtain a solution with UEDGE.

The difference in the speedup results from the two preconditioners in Fig. 5 is d
primarily to the frequency with which they are updated. Note from the table in Fig.
that the PVBBDPRE case (labeled has only about A3 of the preconditioner evaluations
comparedtothe- datapointwiththe UEDGE preconditioner. This difference inthe numbe
of preconditioner evaluations is caused by update logic within PVODE that allows the
of the sameP even when the time step changes for the internally genefteption but
requires a nevP whenAt changes for the externally generatedAs a consequence, the
data point has almost twice the number of overall function evaluations from PVODE. Thi
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16 (+) 5760 67 0.118 0.0625

FIG. 5. Comparison of time to reach a steady-state solution for the parallel UEDGE run on the T3E-€
parallel computer with 1 processor and 16 processors for the plasma equations with PVODE. The poinklabel
uses the PVBBDPRE preconditioner and theoint uses the internal UEDGE preconditioner. The table gives
the number of function evaluations, preconditioner evaluations, and the normalized time to steady state.

the results from the two preconditioners indicate the sensitivity of the trade-off betwe
more frequent preconditioner evaluations (and LU factorization) and fewer Newton—Kryl
iterations as reflected in the function evaluation count. The one-processor base case
the UEDGE preconditioner.

A large fraction of the CPU time for all three cases in Fig. 5 arises from two aspects
the computation, namely, the PVODE Newton—Krylov operations and the formation of t
preconditionerP. For the one-processor base case, PVODE uses 58%, the formation of
P’s uses 35%, and the remainder is used in the LU factorization/backsdié~oir the two
domain-decomposed parallel cases, the factorization of the srRaleecomes negligible
and the message passing is less than 5%. The PVYBBDPRE preconditioner case With .
evaluations takes 95% of the remaining time for PVODE and 5% to form tHe'?4The
UEDGE preconditioner case, which has the faster overall time, takes 80% for PVOI
and 20% to form the 6 P’s. Thus, for our cases, the speedup is largely due to the u
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of many processors (parallelization), while the less-than-ideal scaling arises from the |
of information from the domain-decomposed preconditioner; more frequent updates of
inexpensiveP improves the speed. For other parameters and larger problems, the redt
time required for factorization d? when using many domains can also be important [10]

While it is encouraging to obtain nearly an order of magnitude speedup for the plas
equations in UEDGE, using the relatively simple gas equation shown by Eq. (4) is m(
difficult. When Eq. (4) is included, a large increase in CPU time is requirelt{mes),
which can be traced back to the highly anisotropic mesh shown in Fig. 1 [16]. This mesl
chosen to best represent the plasma that flows rapidly along the flux surfaces and trans
slowly across the magnetic flux surfaces owing to magnetic confinement. However,
gas evolving from the divertor plates does not experience a magnetic force and is
preferentially confined to the flux surfaces. We have studied this problem in some de
for a simple gas diffusion problem outside the actual tokamak geometry and had the s
difficulty. This will be the subject of future research.

4. IMPLEMENTATION AND RESULTS FOR BOUT

4.1. Implementation

For edge-plasma turbulence, the application of a fluid model is reasonable in part bec:
of the low temperature and the resulting short mean-free path from Coulomb collisio
While the unstable modes can have wavelengths that are short compared to the scale le
of equilibrium profiles, the dominant modes have perpendicular wavelengths that are lal
than the ion gyroradiuses, which is consistent with a fluid approach. Thus, it is agair
appropriate to use the Braginskii fluid equations as presented in Section 2.1. By sca
arguments, we can reduce the full set of fluid equations to a seven-variable set for
electrostatic potentiatp; magnetic vector potentialy;; plasma densityp;; electron and
ion temperaturesl, andT;; and electron and ion parallel velocitieg, andv;;. Also, the
auxiliary variablesj; andw, obey the potential equations (5 and 6).

To efficiently simulate turbulence with short perpendicular wavelengths compared to |
rallel wavelengths (i.e., for wavenumbdgs< k), we choose field-line-aligned balloon-
ing coordinatesx, Yy, z), which are related to the usual flux coordinates [14]4, ¢) by the
relationsx = ¥ — ¥s, y = 6, andz = ¢ — [ v(X, y) dy. Here,y is the poloidal magnetic
flux, 0 is the poloidal angle, ang is the toroidal angle. Alsg; = a.B;/R B, measures the
inverse pitch of the magnetic field line, whexgs the effective minor radiug} is the major
radius, andB; , are the toroidal and poloidal magnetic fields, respectively. The partial deriv
tives aren/dy = 9/9x — [(dv/dy) dyd/dz, 3/30 = 8/dy — vd/dz, 3/dp = 8/dz,and
V| = (Bp/asB)d/dy. The magnetic separatrix is denotedypy= vs. Here the key balloon-
ing assumption i$3/0y| <« |vd/dz| andd/d6 ~ —vd/adz. In this choice of coordinatey,
the poloidal angle, is also the coordinate along the field line.

In the most general case, the solution to Egs. (5 and 6) requires a three-dimensi
solver since one of the perpendicular directions is composed of the poloidal and ra
components. However, utilization of the ballooning assumptidq ~ —va/dz) with
short toroidal wavelengths reduces the potential equations to two dimensions in the ra
and toroidal directions. Since the potential equations then do not depend on the polo
coordinate, itis efficient to divide the parallelization domain in this direction. The techniqt
for solving Egs. (5 and 6) is to perform fast fourier transforms (FFTs) in the toroidal directic
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and finite differences in the radial direction. Because these potential equations are lir
the solution forg and A, requires only a tridiagonal inversion in the radial direction anc
the FFT; both operations are localized to each poloidal domain.

To study realistic problems, BOUT obtains magnetic geometry data and plasma prof
from global data files written by UEDGE. The magnetic data come ultimately from a me
netohydrodynamic (MHD) equilibrium code, and the plasma background profiles can
from a UEDGE solution or an analytic fit to experimental data. On a parallel machine
pointer variable is set so that each processor only reads a subset of the data needed
domain. Similarly, each processor writes and reads its own dump file for the data in its
main that can be used later to restart or continue the problem. Presently, a restarted pro
needs to use the same number of processors as the original problem. For postproce:
another program collects the data from a set of the dumped data files generated by B(
and generates a single file for the global solution.

4.2. Results

For BOUT simulations, we also choose parameters corresponding to the edge plasn
the DIII-D tokamak [17]. The computation mesh has 64 poloidal, 64 toroidal, and 40 rad
points. The equilibrium plasma profiles are taken from hyperbolic tangent fits to the DIII-
experimental data (discharge # 89840) at the midplane for plasma dengitglectron
temperatureTeo; ion temperatureTio; the electric field profile; and zero parallel velocity.
The midplane temperature and density on the separatrikgre 58 eV, Tijo = 50 eV, and
Nio = 1.7 x 1019 m~3.

We first compare two implicit methods of advancing the equations in time as discus:
in Section 2.3. One is the Adams functional iteration (using only one iteration step) &
the second is an inexact Newton BDF method utilizing matrix-free Krylov projections. F
this problem, increasing the number of functional iteration steps for the Adams mett
beyond the one-step predictor corrector does not result in significantly better performal
The simulations are begun with a small fractional noise componret®(°) that evolves
into fully developed turbulence. The estimated local relative-error tolerance in PVOL
for each of the cases is set tof0 The resulting time-step history of the two methods
is shown in Fig. 6. At the beginning, both methods show small time steps, but soon
Newton—Krylov method is able to expand its time step by a factor of 70 compared
the predictor—corrector Adams method for the same accuracy. In the nonlinear stage o
simulation where different wave modes are strongly coupled, the Newton method redt
its time step by about/R to satisfy the accuracy constraint. In fact, this simulation include
the large shear in the magnetic equilibrium near the X-point and we could not successf
integrate this case with a previous predictor—corrector method (a one-step iteration). T
using the Newton—Krylov method has become an essential part of our generalized BC
simulations.

A more relevant picture of performance of the predictor—corrector and Newton me
ods is obtained by comparing the total computational work. These results are givelr
Table | for the linear stage of the simulation shown at early time in Fig. 6. The line
stage pertains to times where amplitudes of the fluctuating Fourier components of
variables are sufficiently small that their evolutions are not significantly influenced by nc
linear interactions. Here the number of right-hand side (RHS) evaluations represents
large majority of the computation time required (no preconditioner is used for BOUT
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FIG.6. Time step allowed in BOUT over the course of a time-dependent simulation showing the improvem:
obtained with new Krylov solver PVODE (or CVODE on serial computers) compared to the previously us
functional iteration method.

and the ratio of the numbers in this first column thus gives an approximate measure
the relative speed of the methods; for this example, the Newton method is thus ak
six times more efficient in the linear regime. The average number of Newton iteratic
per time step is~1.5, and the number of inner Krylov iterations per Newton stepfis
The time step is measured in terms of the inverse ion-cyclotron frequefigy, & 10°8s,
and the average value quoted is that after the very early transient wharereases rapidly.
The fastest time scale in the problem is the parallel B-field length divided by the Alfve
speed B(uom;in)~2 in Sl units], giving 10°® s for the parameters here. The order of the
integration scheme is equal to the number of previous values of the RHS or of the varial
used [see in Egs. (8 and 9)]. The value & is chosen by PVODE for both methods to
optimize performance, which resultskn= 1 for the Adams method, but it is primarily the

TABLE |
Comparison of Adams Predictor—Corrector and Newton—Krylov
(BDF) Statistics in Linear Stage of the Simulation

Number of Number of Observed
Method RHS evaluations  time steps  Averageo; At order
One-step P/C 6212 5756 11072 1
BDF Newton 1091 115 * 10 3-4
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FIG. 7. Comparison of speed of parallel BOUT runs on the LLNL SUN Wildfire system with 16 processor
the runs used 1, 5, 10, and 15 processors. Only poloidal decomposition is used with no preconditioner.

Newton aspect of Newton—Krylov method that makes it superior. In the nonlinear regin
the Newton method is about three times more efficient than the Adams method (see Fic

To extend these improvements to parallel machines, we developed a parallel versio
BOUT based on domain decomposition as described in Section 2.4. Because the pote
equations (5 and 6) are independent of the poloidal dimension in the ballooning-coordir
representation, the most effective choice of domains are those that segment the pol
direction. Thus, in referring to Fig. 3, this would consist of removing the horizontal dotte
lines and combining domains (0, 4, 8, 12), (1, 5, 9, 13), etc. Using these poloidal doma
the solution of Egs. (5 and 6) can be done entirely on each domain without regard to
other domains. Then, only message passing is required to fill the guard cells of each doi
in order to use PVODE.

The effectiveness of the parallel BOUT code on a SUN Wildfire system is shown
Fig. 7. This parallel system has 16 processors per machine. Although this system has 1
machines, we only used one because of some initial intermachine scheduling proble
Here and elsewhere, the speedup time refers to wall-clock time, but we verified that it \
close to the CPU time since we were the sole user of the 16-processor machine du
these tests. Cases of 1, 5, 10, and 15 processors are shown in Fig. 7. The speedup is |
linear, with a modest degradation at 15 processors. The source of the degradation wa
investigated, but it is not fundamental to our problem as the next example shows.

When this problem was run on the T3E-900 at NERSC, we could more effectively stu
the code’s behavior through 15 to 60 or more processors. The results are shown in Fig. 8.
can see that the speedup is actually super-linear over the range considered when norm:
to the case using 5 processors, which is the smallest number of processors we cou
this problem into. The super-linear behavior, or offset linear at high processor numbe
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FIG. 8. Comparison of speed of BOUT runs with various numbers of processors on the NERSC CR;
T3E-900. Only poloidal decomposition is used with no preconditioner. The super-linear behavior, or offset lin
curve, is likely caused by better utilization of fast cache memory for a large number of processors.

likely caused by the access speed and size of different types of CPU memory availz
on the T3E. For the 5-processor case, the memory required per processor is significe
larger than that available in the fast cache memory, while for the 60-processor cas
larger percentage of the calculation can reside in the fast cache memory. The divisiol
work for the 60 processor case is 81% for evaluating the BOUT physics equations, 12%
internal PVODE calculations, 6% for interprocessor MPI communications, and 1% for ot!
overhead costs. The load balance among processors is very good with~at ¥y eariation.

5. CONCLUSIONS

We have succeeded in developing parallel versions of two workhorse codes to simu
edge plasmas in MFE devices: UEDGE for 2-D transport and profile evolution and BOL
for 3-D turbulence. Both codes solve the magnetized plasma fluid equations, with UED
focusing on long-time evolution of the plasma profiles and BOUT dealing with short-tin
turbulence that causes anomalous radial transport. A similar domain-decomposition m
is used to achieve the parallelization, which then allows us to utilize the recently develo
Newton—Krylov solver PVODE [3].

The parallelization of UEDGE allowed us to obtain nearly an order of magnitude speec
in execution time for the plasma equations on 16 processors [16]. We were able to re
almost all of the original FORTRAN coding. We developed a domain-decomposition moc
including an automatic decomposition routine and a number of message-passing routi
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and we tested and debugged interface routines with the PVODE solver. We plan to extenc
work to the time-independent parallel nonlinear solver KINSOL [3], which is the parall
equivalent of the serial NKSOL solver.

The fluid gas equations do not parallelize as effectively as the plasma equations bec
of the anisotropic mesh and lack of domain overlap in the preconditioner. We believe t
providing more overlap information in the preconditioner may allow this problem to &
overcome, such as using a Schur complement method [12, 20] or other other schemes
Also, when using a Monte Carlo neutrals code for the gas description [21], this probl
goes away, and one gets the added benefit that Monte Carlo codes parallelize very
On the other hand, one must then achieve convergence of the separate plasma and n
descriptions by an iteration procedure [22].

The results for the BOUT 3-D code exceeded our initial expectations. Even before
rallelization, the conversion to the Newton—Krylov solver [3] produced a code that runs
much as six times faster than an Adams functional iteration method for the case studied
then decreases to three times faster in the strongly turbulent region. These simulation:
very important for understanding the behavior of present experiments and designing fu
devices [18, 19].

The parallelized version of BOUT continues to work well with a poloidal domain de
composition, giving a factor of 13 speedup for 15 processors on the SUN Wildfire a
a very encouraging factor of 69 speedup for 60 processors on the T3E-900. The mo
degradation on the Wildfire system was not studied. The super-linear speedup on the
is likely due to the better utilization of cache memory for the larger number of processc
Most recently, we extended this case to 120 processors on the T3E and found the dat
the same offset linear curve. Note that since BOUT presently uses no preconditioner,
speedup is due entirely to the parallelization; i.e., there is no contribution from possi
modifications to the preconditioner from the domain decomposition.

There are two areas where more short-term improvements may be realized with BC
performance. One is to extend the domain decomposition to the radial direction a:
UEDGE. This will allow the use of more domains as the number of allowable toroid
modes increases. Here we will deal with the coupling of the potential equations acr
the radial domains by a parallel tridiagonal solver [23] or a Newton—Krylov solver usir
a preconditioner. The second area we are focusing on is to increase the time step o
PVODE integration by providing a preconditioner for the time-dependent equations. T
gain has limitations in that we must still properly resolve the turbulence. Some sim|
preconditioners were tried without much improvement, but we know from our experien
with UEDGE that preconditioners can be effective for the equation set we are using,
this warrants further investigation.
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