
Journal of Computational Physics175,249–268 (2002)

doi:10.1006/jcph.2001.6944, available online at http://www.idealibrary.com on

Application of Parallel Implicit Methods to
Edge-Plasma Numerical Simulations

T. D. Rognlien, X. Q. Xu, and A. C. Hindmarsh

Lawrence Livermore National Laboratory, L-630, P.O. Box 808, Livermore, California 94551
E-mail: trognlien@llnl.gov

Received February 2, 2001; revised September 14, 2001

A description is given of the parallelization algorithms and results for two codes
used extensively to model edge plasmas in magnetic fusion energy devices. The
codes are UEDGE, which calculates two-dimensional plasma and neutral gas profiles
over long equilibrium time scales, and BOUT, which calculates three-dimensional
plasma turbulence using experimental or UEDGE profiles. Both codes describe
the plasma behavior using fluid equations. A domain decomposition model is used for
parallelization by dividing the global spatial simulation region into a set of domains.
This approach allows the use of a recently developed Newton–Krylov numerical
solver, PVODE. Results show nearly an order of magnitude speedup in execution
time for the plasma transport equations with UEDGE when the time-dependent sys-
tem is integrated to steady state. A limitation that is identified for UEDGE is the
inclusion of the (unmagnetized) fluid gas equations on a highly anisotropic mesh.
The speedup of BOUT scales nearly linearly up to 64 processors and gets an ad-
ditional speedup factor of 3–6 by using the fully implicit Newton–Krylov solver
compared to an Adams predictor corrector. The turbulent transport coefficients ob-
tained from BOUT guide the use of anomalous transport models within UEDGE,
with the eventual goal of a self-consistent coupling.c© 2002 Elsevier Science

Key Words:parallel computation; edge plasma; plasma transport; plasma turbu-
lence; Newton–Krylov.

1. INTRODUCTION

The goal of this work is to develop numerical codes for simulation of edge plasmas
for magnetic fusion energy (MFE) devices that exploit the power of parallel computers.
Understanding edge plasmas is central to the problems of high heat flux from plasma
power exhaust, adequate helium-ash removal, and sufficient edge temperature to reduce
turbulent core transport, all recognized as critical issues for magnetic fusion reactors. Proper
assessment of these issues requires detailed computer codes. Over the last several years,

249

0021-9991/02 $35.00
c© 2002 Elsevier Science

All rights reserved

250 ROGNLIEN, XU, AND HINDMARSH

we have witnessed a period of unprecedented growth in the computer power available
for modeling physical problems. To utilize this computational power, one needs to make
the shift from coding for single processors to coding for multiprocessor computers. For
codes with explicit time advancement, this shift is relatively straightforward because only
neighboring quantities enter expressions for the solution at each time step. However, many
physical problems, including fusion edge plasmas, contain various phenomena that yield
a wide range of time scales that render their descriptive equations “stiff” in the numerical
sense. Here, implicit methods are especially useful in achieving acceptably large time steps,
but implicit methods require solution of large algebraic systems and thus present a bigger
challenge for parallelization compared to explicit methods.

The simulation of edge plasmas has many time scales because of the simultaneous mod-
eling of ion and electron transport along and across a confining magnetic field, together with
neutral particle processes. Here we describe the parallelization of two codes that simulate
the edge-plasma region in tokamak devices: UEDGE [1] solves for the slowly evolving two-
dimensional (2-D) profiles of a multispecies plasma and neutrals given some anomalous
cross-field diffusion coefficients, and BOUT [2] solves for the three-dimensional (3-D) tur-
bulence that gives rise to the anomalous diffusion. These two codes are thus complementary
in solving different aspects of the edge-plasma transport problem; UEDGE needs BOUT’s
turbulent transport results, while BOUT needs UEDGE’s plasma profiles. Each code can
take from a day to weeks on single-processor computers for large problems with the longer
times being for the turbulence simulations. An essential step to coupling these calculations
is speeding up their individual execution times since many iterations may be needed for a
consistent solution.

This parallelization work benefits from the development of two related parallel implicit
solvers by Hindmarsh and Taylor [3]: PVODE solves a system of time-dependent ordinary
differential equations (ODEs), and KINSOL solves a system of nonlinear equations typically
aimed at finding steady-state solutions. In this paper, we only consider the PVODE solver.
The serial versions of these Newton–Krylov solvers, VODPK [4] and NKSOL [5], have been
used very productively for the serial version of UEDGE. However, our experience [1, 6] and
that of others [7] on serial computers shows that for such solvers to work well for UEDGE,
this strongly nonlinear system of equations must be well preconditioned. The aim of the
preconditioning step is to solve a closely related problem in a more efficient but approximate
manner, thereby yielding a more easily solved problem for the Krylov method [4, 5]. Thus,
part of our work for UEDGE focuses on development of a parallel preconditioner based
on a domain decomposition model [8]. This Fortran preconditioner is interfaced to the
C-language solvers PVODE and KINSOL [3] on a variety of parallel computer platforms
ranging from the massively parallel T3E computer to shared-memory workstations with
multiple processors (SUN and DEC). This aspect of our work demonstrates, for a complex
problem, how one can reuse existing Fortran coding and, with moderate extensions, utilize
recently developed implicit parallel solvers.

Another element of portability is provided by implementing message passing between
multiple processors by using the message-passing interface (MPI) package [9]. This package
is available on many different platforms and allows one to utilize either shared memory or
individual processor memory without changing the code. With MPI, one can now use
processors on one computer or a network of computers.

The impact of domain decomposition on Newton–Krylov preconditioning methods for
the 2-D plasma transport equations has been studied by Knollet al. [10] using a serial

EDGE-PLASMA SIMULATIONS 251

computer (one processor). Our UEDGE work is related but differs in that we solve the
domain-decomposed system on a parallel computer, include the full multiply connected
toroidal geometry with coupling between two internal boundaries rather than a slab geo-
metry, and focus on a time-dependent solution method with expanding time step to reach
steady state. We consider the speedup of the complete nonlinear calculation, while Ref. [10]
compares the effectiveness of different domain blocking strategies on the inner iteration
count for the Krylov solver. Also, the domain-decomposition work in Ref. [10] uses the
transpose-free QMR algorithm for the inner iteration loop, whereas we always use the
generalized minimum residual (GMRES) method. We shall show that our specific examples
are dominated by the Newton–Krylov work and only secondarily by the formation of the
preconditioning matrix,P, while the examples in Ref. [10] are dominated by the formation
of P. We find a similar degradation of the quality of the domain-decomposed preconditioner
owing to the loss of information by omitting coupling between the domains as reported in
Ref. [10]. For the work presented here, the primary gain in “wall-clock” execution time
arises from the parallelization, which is degraded somewhat by the domain preconditioner.

The 3-D BOUT code is parallelized using the same general domain-decomposition model
as UEDGE, but our emphasis for BOUT is somewhat different. First, since BOUT must
follow the rapid fluctuations of the turbulent fields, we compare two fully implicit schemes
for advancing the equations in time and show how the scheme using the Newton–Krylov
method is much superior to a predictor–corrector method. Second, we find that the implicit
BOUT works well without a preconditioner in that only∼6 Krylov vectors per Newton
iteration are needed. This latter fact leads to the straightforward parallelization of BOUT
with a nearly linear speedup in computational time with the number of CPU processors. In
contrast to UEDGE, which often take very large time steps to find an equilibrium and needs
a preconditioner, the good performance of BOUT without a preconditioner is related to the
smaller time step required to resolve the turbulent fluctuations. Like UEDGE, the parallel
version of BOUT uses MPI for portability.

The plan of the paper is as follows: In Section 2, the geometry and basic equations for
the edge-plasma problem are given. The domain-decomposition model used for UEDGE
and BOUT is also described in Section 2. The results for the UEDGE parallelization are
shown in Section 3. The BOUT results from the fully implicit solver and parallelization are
given in Section 4. The conclusions are summarized in Section 5.

2. EQUATIONS, GEOMETRY, AND ALGORITHMS

2.1. Basic Equations

The basic models in the UEDGE and BOUT codes begin with the plasma fluid equations
of continuity, momentum, and thermal energy for both the electrons and ions in the form
given by Braginskii [13]. The continuity equations have the form

∂n

∂t
+∇ · (ne,i ve,i) = Sp

e,i , (1)

wherene,i andve,i are the electron and ion densities and mean velocities, respectively. The
source termSp

e,i arises from ionization of neutral gas and recombination.

252 ROGNLIEN, XU, AND HINDMARSH

The momentum equations are given by

nme,i
∂ve,i

∂t
+me,i ne,i ve,i · ∇ve,i = −∇ pe,i + qne,i (E+ ve,i × B/c)

−∇ ·Πe,i −Re,i + Sm
e,i , (2)

whereme,i are the masses,pe,i = ne,i Te,i are the pressures withTe,i being the temperatures,
q is the particle charge,E is the electric field,B is the magnetic field,c is the speed of light,
Πe,i are the viscous tensors, andRe,i are the thermal forces [13]. The sourceSm

i,e contains
a sink term−nmi,evi S

p
i,e that arises if newly created particles have no drift motion.

The ion and electron energy equations can be written in the form

3

2
n
∂Te,i

∂t
+ 3

2
nve,i · ∇Te,i + pe,i∇ · ve,i = −∇ · qe,i −Πe,i · ∇ve,i + Qe,i , (3)

whereqe,i are the heat fluxes andQe,i are the volume heating terms [13].
In their general three-dimensional form, the 6 plasma equations given above represent 10

separate partial differential equations forne, ni , ve, vi , Te, andTi . UEDGE and BOUT use
somewhat different assumptions to reduce the complexity of their models. Both codes use
the classical parallel transport given by Braginskii, but UEDGE uses enhanced perpendicular
transport coefficients to model the effect of the turbulence calculated by BOUT. Here parallel
and perpendicular refer to directions relative to the magnetic field,B. In the calculation of the
electrostatic potential,φ, both codes use the quasineutral condition,ne = ni , and in addition,
BOUT solves for the parallel magnetic vector potential,A‖. UEDGE assumes symmetry
in a third (toroidal) dimension, whereas BOUT allows fluctuations to have variations in all
three spatial dimensions even though its equilibrium profiles are toroidally symmetric.

UEDGE also includes the capability of evolving neutral gas species for each type of ion,
which can be described by models of varying sophistication. The simplest neutral description
is a diffusion model, where the neutral density,nn, obeys the continuity equation

∂

∂t
nn + ∂

∂x
(nnvnx)+ ∂

∂y
(nnvny) = (〈σr ve〉 − 〈σi ve〉)nenn. (4)

Here the neutral velocities,vnx,ny, are taken from a diffusion approximation using the
charge-exchange collision frequency between ions and neutrals, and the source and sink
terms on the right-hand side represent recombination and ionization with rate coefficients
〈σr ve〉 and〈σi ve〉, respectively. We find that the parallelization of this neutral gas equation
on the highly anisotropic mesh performs more poorly than the plasma equations, a point
we will return to in Section 3.2.

For the 3-D BOUT turbulence simulations, two auxiliary variables and related equations
are introduced to help solve the system of plasma equations [2]. These variables are the
parallel current,j‖, and vorticity,$, and the related equations are Poisson-like equations
for φ andA‖:

∇2
⊥φ = $ (5)

∇2
⊥A‖ = −4π

c
j‖. (6)

The φ potential equation is not obtained from Poisson’s equation, but rather from the
quasineutrality condition and the current continuity equation. Here∇2

⊥ refers to the

EDGE-PLASMA SIMULATIONS 253

Laplacian operator in the directions perpendicular to the magnetic field. The solutions
to these simple-looking equations, Eqs. (5) and (6), have important consequences for the
parallel version of BOUT.

2.2. Geometry

Both UEDGE and BOUT are written in general coordinates that can be adopted to a slab,
cylinder, or torus by the use of the appropriate metric coefficients. For MFE devices, interest
has focused on toroidal devices with an emphasis on tokamaks [14]. The region occupied
by the edge plasma for the poloidal plane of a tokamak with a single-null divertor is shown
in Fig. 1. The long, sometimes closed lines of the mesh represent poloidal magnetic flux
surfaces in which the magnetic field vector lies. For tokamaks, the strongest magnetic field
component is in the toroidal direction, out of the plane of the figure.

In the poloidal plane, UEDGE and BOUT use the poloidal flux surfaces as one spatial
coordinate, with the second being the curves normal to the flux surfaces shown in Fig. 1a,
but a nonorthogonal mesh is sometimes used to conform the mesh to material surfaces at
the boundary. For BOUT, toroidal variations are allowed in a segment of the torus as shown
in Fig. 1b; this segment is periodically replicated to fill out the torus. Thus, the wavelength
of the longest toroidal mode simulated is set by the length of the toroidal segment used.

The numerical discretization schemes used by UEDGE and BOUT are similar in the two
dimensions in the poloidal plane. UEDGE uses a conservative finite-volume method and
BOUT uses a finite-difference method including a fourth-order spatial discretization for the
nonlinearE× B inertial velocity terms.

2.3. Implicit Algorithms

The fluid equations solved by both UEDGE and BOUT can be cast in the most general
form in terms of a system of ODEs

du
dt
= f(u), (7)

whereu is the vector of unknowns, andf is the result of sources, sinks, and the discretized
spatial transport terms. Since UEDGE is usually seeking steady-state solutions, it strives to
take the maximum time step (1t) possible and sometimes works in the limit of1t →∞.
BOUT always follows time dependence, but we wish to do so with optimum efficiency.
This section sets the background for understanding the algorithms used for UEDGE and
BOUT in Sections 3 and 4.

We consider two implicit schemes, one utilizing a predictor–corrector method and the
other using the Newton–Krylov approach. Our codes presently use the Newton–Krylov
algorithm utilizing GMRES, but introducing the predictor–corrector method allows us to
make a comparison later in Section 4.2. These schemes are exemplified by the Adams
method and the backward differentiation formula (BDF) method, respectively. For the
Adams method, the advancement ofu from time leveln− 1 ton takes the form

un = un−1+1t (α0fn + · · · + αk−1fn−k+1), (8)

wherek is the order of the scheme, theα’s are coefficients [15], andfn ≡ f(un). For the
BDF method, the advancement is given by

un = (β1un−1+ · · · + βkun−k)+1tγ0fn, (9)

254 ROGNLIEN, XU, AND HINDMARSH

FIG. 1. The toroidal tokamak geometry simulated by the UEDGE and BOUT codes. In (a), the poloidal
plane plot shows the 2-D edge region simulated by UEDGE and the mesh used that has one coordinate based on
magnetic flux surfaces as provided by an MHD equilibrium code. In addition to simulating the poloidal annulus
in (a), BOUT allows fluctuations to have toroidal variations that fit periodically into the toroidal segment shown
from the top view in (b). Thus, inclusion on longer toroidal wavelength modes requires using a larger toroidal
segment at increased computational cost.

EDGE-PLASMA SIMULATIONS 255

where theβ ’s andγ0 are coefficients determined by the order (k) used [15]. The Adams
method is usually solved by functional iteration; i.e., an approximation toun at iterationj ,
termedu j

n, is obtained by evaluatingfn with u j−1
n ; this approach can work well for nonstiff

systems. While the BDF method can also use functional iteration, a more effective method
is often a Newton iteration that expandsfn at iteration j as

f(u j) ≈ f(u j−1)+ ∂f
∂u
(u j − u j−1). (10)

Equation (9) then is a linear equation foru j
n that can be written as

(I/1tγ0− J)u j
n = g, (11)

whereI is the identity matrix andJ ≡ ∂f/∂u is the Jacobian evaluated withu from a previous
iteratation or time step. Also,g is a vector that depends on values ofu from the past iteration,
u j−1, and at previous time steps as obtained from Eqs. (9 and 10). Equation (11) is usually
solved by an iterative method to an accuracy somewhat better than the estimated error in
un−1 from the time advancement; this is known as an inexact Newton method. We shall use
a Krylov projection method to solve the linear system [4, 11]. Although more numerical
operations are required for such Newton methods per iteration, they often have superior
overall performance for stiff ODEs since larger time steps can be used, as we shall illustrate
with a BOUT example. Also, UEDGE requires the inexact Newton method for reasonable
performance, and it requires that the system of equations be preconditioned.

Newton schemes that utilize a matrix-free Krylov projection method often require precon-
ditioning. The procedure involves solving related linear systemsPw= h with a matrixP that
approximates the original matrix but is simpler to solve. By assumption,P∼ (I/1tγ0− J).
Noting thatP−1P= I , we may insert this product into Eq. (11) to form the preconditioned
system

[(I/1tγ0− J)P−1]
(
Pu j

n

) = g. (12)

The new variables arePun, and this system is easier to solve by iterative methods since
(I/1tγ0− J)P−1 ≡ A ∼ I is more diagonally dominant. Each iteration of the Krylov
method does require matrix–vector productsAv (with v being the Krylov basis vector), and
these are done using a matrix-free finite-difference quotient approximation toJw where
w = P−1v. More detailed descriptions of the Newton–Krylov algorithm are available from
a number of sources, e.g., Refs. [4, 11, 12].

2.4. Domain-Decomposition Model

UEDGE and BOUT use the same poloidal mesh, and this region can be divided into
domains on parallel computers where separate processors can solve a local problem. How-
ever, for the edge-plasma problem, there is a set of natural interior boundaries that need
to be identified and accommodated for efficient decomposition. The regions delineated by
these interior boundaries are shown in Fig. 2 for both the tokamak poloidal plane and the
corresponding mapping to a rectangular domain. Information needs to be passed from cells
that touch one of the dotted lines between the private-flux and core regions to the cells
along the other dotted line, and vice versa. These interior boundaries are used to account
for the periodic boundary conditions used within the core region and the continuity-of-flux
condition between the private-flux region 3 and private-flux region 4.

256 ROGNLIEN, XU, AND HINDMARSH

FIG. 2. The poloidal plane is divided into four main regions for the domain decomposition model, each of
which can be further subdivided. The four regions are mapped into the rectangular geometry shown in the lower
part of the figure by opening the poloidal configuration along the dotted line.

If the selection of the domains is such that the boundaries of major regions 1–4 in Fig. 2 are
always included in the boundaries of the domains, then the finite-difference representation
in a given domain can be entirely local. Such a domain decomposition is shown in Fig. 3a
where 16 domains are used in the poloidal plane.

The information needed to form the local finite-difference approximations to the deriva-
tives at the boundary of the domains is provided by passing the variable data between
processors (domains) via MPI [9] to fill the guard cells that surround each domain shown
in Fig. 3b. Notice that data needed in a guard cell are not necessarily from the adjacent
domain; e.g., the right-side guard-cell data for domain 0 in Fig. 3a come from domain 3.
These guard cells do not contain variables that are advanced for each domain, but rather they
contain only a copy of this information from other processors. The only exception to this
rule is for UEDGE, which uses exterior guard cells to specify boundary conditions; but here
the boundary conditions are local, so no message passing is required.

The domain decomposition model plays two roles. First, to utilize the implicit PVODE
(or KINSOL) solver [3], we must divide the physical space simulated by our codes in

EDGE-PLASMA SIMULATIONS 257

FIG. 3. (a) Division of UEDGE geometry into 16 regions is shown. (b) More detail of the mesh is shown
within the domains together with the overlapping guard cells.

this manner, where each processor, with guard cells, has all of the information required
to evaluate the right-hand side for its domain. The Newton–Krylov solvers, together with
modest amount of message passing between domains, allows an implicit solution to the
global problem. The second role is that the model provides the basis for the preconditioning
algorithm that is required by UEDGE. Here the full set of preconditioner Jacobian elements
in P can be efficiently generated in parallel by finite-difference quotients. For efficiency,
PVODE reusesP and its factorization for a number of nonlinear iterations. An approximate
LU factorization ofP on each processor is performed using the ILUT routine [11] with
a drop-tolerance parameter of 10−3 and a row fill-in parameter of 50. We have also used
simpler routines such as ILU(0) [11], but since the LU factorization is not a significant time
sink for our problems, we chose to maintain the flexibility of ILUT. Furthermore, since
the domain size is typically small compared to full simulation region, one can be more ag-
gressive with LU factorization because it is faster to factor a numberm of n× n matrices
than onemn×mn matrix. The overall procedure used here of not including coupling

258 ROGNLIEN, XU, AND HINDMARSH

FIG. 4. Schematic showing the three major components of the parallel UEDGE code as replicated on each
domain or processor.

between domains at the preconditioning level is referred to as additive-Schwarz with zero
overlap [12].

The manner in which UEDGE utilizes the PVODE solver can be most succinctly ex-
plained by the diagram in Fig. 4. On the left is the main UEDGE calculation of the
finite-difference equations that yield the “right-hand side” of the evolutionary equations

EDGE-PLASMA SIMULATIONS 259

for each variable. The central column of Fig. 4 shows the wrappers mentioned previously
that pass data from the Fortran UEDGE code to the C solvers, and vice versa. Finally, on the
right is one of the C solvers, PVODE or KINSOL, which were developed previously [3].
Note that the foregoing model is replicated for all domains or processors. Communication
between processors as required to fill guard cells is shown by the “MPI send and receive”
boxes in Fig. 4.

The parallel model for BOUT is very similar to that just described for UEDGE, except
that BOUT is written in C and thus requires no extra interface routines to utilize the C
solvers. Since BOUT must follow the time dependence, only the PVODE solver is used
here. Also, as mentioned earlier, BOUT works well without a preconditioner. Some work has
been done on testing preconditioners for even more improvement, but more development is
needed.

3. IMPLEMENTATION AND RESULTS FOR UEDGE

3.1. Implementation

The 2-D plasma transport equations used in UEDGE come from a reduction of those
presented in Section 2.1 for the parameters of the edge plasma. This reduction results in
five equations for the following variables: ion density,ni ; ion parallel velocity,v‖; separate
electron and ion temperatures,Te andTi ; and the electrostatic potential,φ. If plasma currents
are ignored, as done in the 2-D examples in Section 3.2, the potential becomes a dependent
variable, resulting in four basic plasma equations. In addition, impurity species can be
included that have their own density and parallel velocities but a common temperature,Ti ,
with the ions. When the neutral gas is included, at least the neutral continuity equation (4)
is solved for each ion isotope.

With UEDGE, we seek efficient steady-state solutions while still retaining the options
to simulate time-dependent evolution of the profiles when needed. Using large time steps,
or performing nonlinear iterations to steady state with no time step, requires the use of a
good preconditioner. Although reduced preconditioners have been tried for this complex
problem, we have found that a full preconditioning matrix,P, computed by finite-difference
quotients is needed to effectively obtain solutions for a wide range of parameters. This step
is distinct from the finite-difference approximation to the matrix–vector product,Jv, used
by the PVODE Krylov solver. Such a preconditioner is only updated occasionally during the
nonlinear iteration. We have two options for the parallel UEDGE, either using an algorithm
developed specifically for UEDGE or, because each region in the domain decomposition
model is simply connected yielding band-block-diagonal (BBD) matrices, using the precon-
ditioners PVBBDPRE supplied as part of the PVODE package [3]. The UEDGE-specific
algorithm uses a small 2-D “window” that moves across the mesh, providing local Jacobian
elements by difference quotients over a restricted range of the right-hand side evalua-
tions to the 2-D window; nonlocal couplings from the multiple-connected regions are built
into the algorithm so that it works on either serial or parallel machines. The PVBBDPRE
module assumes all couplings are localized to a small neighborhood of a given variable.
HereP is a BBD matrix, where each block is generated on one processor and is obtained
from a banded difference-quotient approximation. For the domain-decomposed system, the
operation counts for the two different methods of calculatingP are nearly the same. The
importance of frequent updates toP for our problem will be shown in the next section.

260 ROGNLIEN, XU, AND HINDMARSH

To implement the domain-decomposition model, we have written a routine that automati-
cally divides the global mesh in a manner that respects the “natural” boundaries shown in
Fig. 2. One can specify the number of subdomains in each of these regions; any imbalance
is handled by assigning fewer equations than the average to a minority of processors. We
typically obtain complete load balancing by a proper choice of mesh sizes and number of
domains. The routine also sorts through the indexing for the guard cells and provides a map
to specify which processors must exchange boundary data. A set of routines was developed
that deals with passing data from the master processor to domain processors. These data
include the initial guess to the global solution, the global geometrical data, and the mapping
index for the guard cells needed for each domain. A similar routine is used to gather the data
from all the processors into a global solution at the end of the run. Finally, another set of
message-passing routines was constructed to refresh the guard-cell data at the appropriate
times during the Jacobian and Newton–Krylov steps.

3.2. Results

We run UEDGE on the T3E-600 using the 16 domain configuration shown in Fig. 3 for
the full DIII-D tokamak geometry in Fig. 1a. A couple of factors dictate the use of the 16
domain configuration: We need the internal connections between private-flux regions and
the two ends of the core region to occur on domain boundaries (see Fig. 2), and the spatial
resolution with load balancing requires that we have about three times the number of cells
in the SOL as in the core. The computation mesh has 64 poloidal mesh points and 48 radial
points so that we can fit the single-domain base case on one processor for direct comparison
with the multiprocessor cases.

The input parameters used at the core boundary areTe,i = 150 eV,ni = 2× 1019 m−3,
and zero parallel velocity. The anomalous radial diffusion coefficients are set to 1 m2 s−1,
and the plate particle recycling coefficient is 0.9. The simulation is initialized with a solu-
tion obtained for aTe,i = 100 eV on the core boundary, and we then measure the computer
time required to find the solution when we switch toTe,i = 150 eV on the core boundary.
The results presented only include evolution of the plasma equations for a fixed neutral
background. The execution time normalized to that for one processor is presented in Fig. 5.
Here PVODE is used to run to steady state with the plasma equations, and two different
preconditioners are used, the case marked× being PVBBDPRE, and the+ point being
the internal UEDGE preconditioner. In the table below the figure, the data show the num-
ber of function (or right-hand side) evaluations for the Krylov iterations, the number of
preconditioner evaluations, the normalized time, and the ideal time. Although the speed
of the calculation depends somewhat on the preconditioner used, experience with various
approximate preconditioners on serial computers indicates that both work well; errors in
the preconditioner typically result in an inability to obtain a solution with UEDGE.

The difference in the speedup results from the two preconditioners in Fig. 5 is due
primarily to the frequency with which they are updated. Note from the table in Fig. 5
that the PVBBDPRE case (labeled×) has only about 1/3 of the preconditioner evaluations
compared to the+ data point with the UEDGE preconditioner. This difference in the number
of preconditioner evaluations is caused by update logic within PVODE that allows the use
of the sameP even when the time step changes for the internally generatedP option but
requires a newP when1t changes for the externally generatedP. As a consequence, the×
data point has almost twice the number of overall function evaluations from PVODE. Thus,

EDGE-PLASMA SIMULATIONS 261

FIG. 5. Comparison of time to reach a steady-state solution for the parallel UEDGE run on the T3E-600
parallel computer with 1 processor and 16 processors for the plasma equations with PVODE. The point labeled×
uses the PVBBDPRE preconditioner and the+ point uses the internal UEDGE preconditioner. The table gives
the number of function evaluations, preconditioner evaluations, and the normalized time to steady state.

the results from the two preconditioners indicate the sensitivity of the trade-off between
more frequent preconditioner evaluations (and LU factorization) and fewer Newton–Krylov
iterations as reflected in the function evaluation count. The one-processor base case uses
the UEDGE preconditioner.

A large fraction of the CPU time for all three cases in Fig. 5 arises from two aspects of
the computation, namely, the PVODE Newton–Krylov operations and the formation of the
preconditioner,P. For the one-processor base case, PVODE uses 58%, the formation of the
P’s uses 35%, and the remainder is used in the LU factorization/backsolve ofP. For the two
domain-decomposed parallel cases, the factorization of the smallerP’s becomes negligible
and the message passing is less than 5%. The PVBBDPRE preconditioner case with 24P
evaluations takes 95% of the remaining time for PVODE and 5% to form the 24P’s. The
UEDGE preconditioner case, which has the faster overall time, takes 80% for PVODE
and 20% to form the 67P’s. Thus, for our cases, the speedup is largely due to the use

262 ROGNLIEN, XU, AND HINDMARSH

of many processors (parallelization), while the less-than-ideal scaling arises from the loss
of information from the domain-decomposed preconditioner; more frequent updates of the
inexpensiveP improves the speed. For other parameters and larger problems, the reduced
time required for factorization ofP when using many domains can also be important [10].

While it is encouraging to obtain nearly an order of magnitude speedup for the plasma
equations in UEDGE, using the relatively simple gas equation shown by Eq. (4) is more
difficult. When Eq. (4) is included, a large increase in CPU time is required (>3 times),
which can be traced back to the highly anisotropic mesh shown in Fig. 1 [16]. This mesh is
chosen to best represent the plasma that flows rapidly along the flux surfaces and transports
slowly across the magnetic flux surfaces owing to magnetic confinement. However, the
gas evolving from the divertor plates does not experience a magnetic force and is not
preferentially confined to the flux surfaces. We have studied this problem in some detail
for a simple gas diffusion problem outside the actual tokamak geometry and had the same
difficulty. This will be the subject of future research.

4. IMPLEMENTATION AND RESULTS FOR BOUT

4.1. Implementation

For edge-plasma turbulence, the application of a fluid model is reasonable in part because
of the low temperature and the resulting short mean-free path from Coulomb collisions.
While the unstable modes can have wavelengths that are short compared to the scale lengths
of equilibrium profiles, the dominant modes have perpendicular wavelengths that are larger
than the ion gyroradius,ρs, which is consistent with a fluid approach. Thus, it is again
appropriate to use the Braginskii fluid equations as presented in Section 2.1. By scaling
arguments, we can reduce the full set of fluid equations to a seven-variable set for the
electrostatic potential,φ; magnetic vector potential,A‖; plasma density,ni ; electron and
ion temperatures,Te andTi ; and electron and ion parallel velocities,ve‖ andvi ‖. Also, the
auxiliary variables,j‖ and$, obey the potential equations (5 and 6).

To efficiently simulate turbulence with short perpendicular wavelengths compared to pa-
rallel wavelengths (i.e., for wavenumbersk‖ ¿ k⊥), we choose field-line-aligned balloon-
ing coordinates (x, y, z), which are related to the usual flux coordinates [14] (ψ, θ, ϕ) by the
relationsx = ψ − ψs, y = θ , andz= ϕ − ∫ ν(x, y) dy. Here,ψ is the poloidal magnetic
flux, θ is the poloidal angle, andϕ is the toroidal angle. Also,ν ≡ aeBt/RBp measures the
inverse pitch of the magnetic field line, whereae is the effective minor radius,R is the major
radius, andBt,p are the toroidal and poloidal magnetic fields, respectively. The partial deriva-
tives are∂/∂ψ = ∂/∂x − ∫ (∂ν/∂ψ) dy∂/∂z, ∂/∂θ = ∂/∂y− ν∂/∂z, ∂/∂ϕ = ∂/∂z, and
∇‖ = (Bp/aeB)∂/∂y. The magnetic separatrix is denoted byψ = ψs. Here the key balloon-
ing assumption is|∂/∂y| ¿ |ν∂/∂z| and∂/∂θ ' −ν∂/∂z. In this choice of coordinates,y,
the poloidal angle, is also the coordinate along the field line.

In the most general case, the solution to Eqs. (5 and 6) requires a three-dimensional
solver since one of the perpendicular directions is composed of the poloidal and radial
components. However, utilization of the ballooning assumption (∂/∂θ ≈ −ν∂/∂z) with
short toroidal wavelengths reduces the potential equations to two dimensions in the radial
and toroidal directions. Since the potential equations then do not depend on the poloidal
coordinate, it is efficient to divide the parallelization domain in this direction. The technique
for solving Eqs. (5 and 6) is to perform fast fourier transforms (FFTs) in the toroidal direction

EDGE-PLASMA SIMULATIONS 263

and finite differences in the radial direction. Because these potential equations are linear,
the solution forφ and A‖ requires only a tridiagonal inversion in the radial direction and
the FFT; both operations are localized to each poloidal domain.

To study realistic problems, BOUT obtains magnetic geometry data and plasma profiles
from global data files written by UEDGE. The magnetic data come ultimately from a mag-
netohydrodynamic (MHD) equilibrium code, and the plasma background profiles can be
from a UEDGE solution or an analytic fit to experimental data. On a parallel machine, a
pointer variable is set so that each processor only reads a subset of the data needed for its
domain. Similarly, each processor writes and reads its own dump file for the data in its do-
main that can be used later to restart or continue the problem. Presently, a restarted problem
needs to use the same number of processors as the original problem. For postprocessing,
another program collects the data from a set of the dumped data files generated by BOUT
and generates a single file for the global solution.

4.2. Results

For BOUT simulations, we also choose parameters corresponding to the edge plasma of
the DIII-D tokamak [17]. The computation mesh has 64 poloidal, 64 toroidal, and 40 radial
points. The equilibrium plasma profiles are taken from hyperbolic tangent fits to the DIII-D
experimental data (discharge # 89840) at the midplane for plasma density,ni 0; electron
temperature,Te0; ion temperature,Ti 0; the electric field profile; and zero parallel velocity.
The midplane temperature and density on the separatrix areTe0 = 58 eV,Ti 0 = 50 eV, and
ni 0 = 1.7× 1019 m−3.

We first compare two implicit methods of advancing the equations in time as discussed
in Section 2.3. One is the Adams functional iteration (using only one iteration step) and
the second is an inexact Newton BDF method utilizing matrix-free Krylov projections. For
this problem, increasing the number of functional iteration steps for the Adams method
beyond the one-step predictor corrector does not result in significantly better performance.
The simulations are begun with a small fractional noise component (∼10−5) that evolves
into fully developed turbulence. The estimated local relative-error tolerance in PVODE
for each of the cases is set to 10−4. The resulting time-step history of the two methods
is shown in Fig. 6. At the beginning, both methods show small time steps, but soon the
Newton–Krylov method is able to expand its time step by a factor of 70 compared to
the predictor–corrector Adams method for the same accuracy. In the nonlinear stage of the
simulation where different wave modes are strongly coupled, the Newton method reduces
its time step by about 1/2 to satisfy the accuracy constraint. In fact, this simulation includes
the large shear in the magnetic equilibrium near the X-point and we could not successfully
integrate this case with a previous predictor–corrector method (a one-step iteration). Thus,
using the Newton–Krylov method has become an essential part of our generalized BOUT
simulations.

A more relevant picture of performance of the predictor–corrector and Newton meth-
ods is obtained by comparing the total computational work. These results are given in
Table I for the linear stage of the simulation shown at early time in Fig. 6. The linear
stage pertains to times where amplitudes of the fluctuating Fourier components of the
variables are sufficiently small that their evolutions are not significantly influenced by non-
linear interactions. Here the number of right-hand side (RHS) evaluations represents the
large majority of the computation time required (no preconditioner is used for BOUT),

264 ROGNLIEN, XU, AND HINDMARSH

FIG. 6. Time step allowed in BOUT over the course of a time-dependent simulation showing the improvement
obtained with new Krylov solver PVODE (or CVODE on serial computers) compared to the previously used
functional iteration method.

and the ratio of the numbers in this first column thus gives an approximate measure of
the relative speed of the methods; for this example, the Newton method is thus about
six times more efficient in the linear regime. The average number of Newton iterations
per time step is∼1.5, and the number of inner Krylov iterations per Newton step is∼6.
The time step is measured in terms of the inverse ion-cyclotron frequency, 1/ωci ≈ 10−8 s,
and the average value quoted is that after the very early transient where1t increases rapidly.
The fastest time scale in the problem is the parallel B-field length divided by the Alfven
speed [B(µ0mi ni)

−1/2 in SI units], giving 10−8 s for the parameters here. The order of the
integration scheme is equal to the number of previous values of the RHS or of the variables
used [seek in Eqs. (8 and 9)]. The value ofk is chosen by PVODE for both methods to
optimize performance, which results ink = 1 for the Adams method, but it is primarily the

TABLE I

Comparison of Adams Predictor–Corrector and Newton–Krylov

(BDF) Statistics in Linear Stage of the Simulation

Number of Number of Observed
Method RHS evaluations time steps Average1tωci 1t order

One-step P/C 6212 5756 1× 10−2 1
BDF Newton 1091 115 7× 10−1 3–4

EDGE-PLASMA SIMULATIONS 265

FIG. 7. Comparison of speed of parallel BOUT runs on the LLNL SUN Wildfire system with 16 processors;
the runs used 1, 5, 10, and 15 processors. Only poloidal decomposition is used with no preconditioner.

Newton aspect of Newton–Krylov method that makes it superior. In the nonlinear regime,
the Newton method is about three times more efficient than the Adams method (see Fig. 6).

To extend these improvements to parallel machines, we developed a parallel version of
BOUT based on domain decomposition as described in Section 2.4. Because the potential
equations (5 and 6) are independent of the poloidal dimension in the ballooning-coordinate
representation, the most effective choice of domains are those that segment the poloidal
direction. Thus, in referring to Fig. 3, this would consist of removing the horizontal dotted
lines and combining domains (0, 4, 8, 12), (1, 5, 9, 13), etc. Using these poloidal domains,
the solution of Eqs. (5 and 6) can be done entirely on each domain without regard to the
other domains. Then, only message passing is required to fill the guard cells of each domain
in order to use PVODE.

The effectiveness of the parallel BOUT code on a SUN Wildfire system is shown in
Fig. 7. This parallel system has 16 processors per machine. Although this system has three
machines, we only used one because of some initial intermachine scheduling problems.
Here and elsewhere, the speedup time refers to wall-clock time, but we verified that it was
close to the CPU time since we were the sole user of the 16-processor machine during
these tests. Cases of 1, 5, 10, and 15 processors are shown in Fig. 7. The speedup is nearly
linear, with a modest degradation at 15 processors. The source of the degradation was not
investigated, but it is not fundamental to our problem as the next example shows.

When this problem was run on the T3E-900 at NERSC, we could more effectively study
the code’s behavior through 15 to 60 or more processors. The results are shown in Fig. 8. One
can see that the speedup is actually super-linear over the range considered when normalized
to the case using 5 processors, which is the smallest number of processors we could fit
this problem into. The super-linear behavior, or offset linear at high processor number, is

266 ROGNLIEN, XU, AND HINDMARSH

FIG. 8. Comparison of speed of BOUT runs with various numbers of processors on the NERSC CRAY
T3E-900. Only poloidal decomposition is used with no preconditioner. The super-linear behavior, or offset linear
curve, is likely caused by better utilization of fast cache memory for a large number of processors.

likely caused by the access speed and size of different types of CPU memory available
on the T3E. For the 5-processor case, the memory required per processor is significantly
larger than that available in the fast cache memory, while for the 60-processor case, a
larger percentage of the calculation can reside in the fast cache memory. The division of
work for the 60 processor case is 81% for evaluating the BOUT physics equations, 12% for
internal PVODE calculations, 6% for interprocessor MPI communications, and 1% for other
overhead costs. The load balance among processors is very good with only a∼1% variation.

5. CONCLUSIONS

We have succeeded in developing parallel versions of two workhorse codes to simulate
edge plasmas in MFE devices: UEDGE for 2-D transport and profile evolution and BOUT
for 3-D turbulence. Both codes solve the magnetized plasma fluid equations, with UEDGE
focusing on long-time evolution of the plasma profiles and BOUT dealing with short-time
turbulence that causes anomalous radial transport. A similar domain-decomposition model
is used to achieve the parallelization, which then allows us to utilize the recently developed
Newton–Krylov solver PVODE [3].

The parallelization of UEDGE allowed us to obtain nearly an order of magnitude speedup
in execution time for the plasma equations on 16 processors [16]. We were able to reuse
almost all of the original FORTRAN coding. We developed a domain-decomposition model
including an automatic decomposition routine and a number of message-passing routines,

EDGE-PLASMA SIMULATIONS 267

and we tested and debugged interface routines with the PVODE solver. We plan to extend this
work to the time-independent parallel nonlinear solver KINSOL [3], which is the parallel
equivalent of the serial NKSOL solver.

The fluid gas equations do not parallelize as effectively as the plasma equations because
of the anisotropic mesh and lack of domain overlap in the preconditioner. We believe that
providing more overlap information in the preconditioner may allow this problem to be
overcome, such as using a Schur complement method [12, 20] or other other schemes [10].
Also, when using a Monte Carlo neutrals code for the gas description [21], this problem
goes away, and one gets the added benefit that Monte Carlo codes parallelize very well.
On the other hand, one must then achieve convergence of the separate plasma and neutral
descriptions by an iteration procedure [22].

The results for the BOUT 3-D code exceeded our initial expectations. Even before pa-
rallelization, the conversion to the Newton–Krylov solver [3] produced a code that runs as
much as six times faster than an Adams functional iteration method for the case studied and
then decreases to three times faster in the strongly turbulent region. These simulations are
very important for understanding the behavior of present experiments and designing future
devices [18, 19].

The parallelized version of BOUT continues to work well with a poloidal domain de-
composition, giving a factor of 13 speedup for 15 processors on the SUN Wildfire and
a very encouraging factor of 69 speedup for 60 processors on the T3E-900. The modest
degradation on the Wildfire system was not studied. The super-linear speedup on the T3E
is likely due to the better utilization of cache memory for the larger number of processors.
Most recently, we extended this case to 120 processors on the T3E and found the data on
the same offset linear curve. Note that since BOUT presently uses no preconditioner, this
speedup is due entirely to the parallelization; i.e., there is no contribution from possible
modifications to the preconditioner from the domain decomposition.

There are two areas where more short-term improvements may be realized with BOUT
performance. One is to extend the domain decomposition to the radial direction as in
UEDGE. This will allow the use of more domains as the number of allowable toroidal
modes increases. Here we will deal with the coupling of the potential equations across
the radial domains by a parallel tridiagonal solver [23] or a Newton–Krylov solver using
a preconditioner. The second area we are focusing on is to increase the time step of the
PVODE integration by providing a preconditioner for the time-dependent equations. This
gain has limitations in that we must still properly resolve the turbulence. Some simple
preconditioners were tried without much improvement, but we know from our experience
with UEDGE that preconditioners can be effective for the equation set we are using, and
this warrants further investigation.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. This research was supported by the
LLNL LDRD program as Project 97-ERD-045. We have benefited from many useful discussions with A. G. Taylor
and P. N. Brown. The simulations on the SUN Wildfire and DEC computers were performed at LLNL while the
simulations on the T3E-600 and T3E-900 computers were performed at NERSC. We thank the LLNL Computing
Center staff and the NERSC staff for their able assistance; help from Chris H. Q. Ding of NERSC is especially
acknowledged.

268 ROGNLIEN, XU, AND HINDMARSH

REFERENCES

1. T. D. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, A fully implicit, time dependent 2-D fluid
code for modeling tokamak edge plasmas,J. Nucl. Mater. 196–198, 347 (1992); T. D. Rognlien, P. N. Brown,
R. B. Campbell, T. B. Kaiser, D. A. Knoll, P. R. McHugh, G. D. Porter, M. E. Rensink, and G. R. Smith, 2-D
fluid transport simulations of gaseous/radiative divertor,Contrib. Plasma Phys.34, 362 (1994).

2. X. Q. Xu and Ronald H. Cohen, SOL turbulence theory and simulations,Contrib. Plasma Phys.38, 158
(1998).

3. A. C. Hindmarsh and A. G. Taylor,PVODE and KINSOL: Parallel Software for Differential and Nonlinear
Systems, Lawrence Livermore National Laboratory Report UCRL-ID-129739, (Feb. 1998).

4. P. N. Brown and A. C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems,J. Appl. Math.
Comput.31, 40 (1989).

5. P. N. Brown and Y. Saad, hybrid Krylov methods for nonlinear systems of equations,SIAM J. Sci. Stat.
Comput. 11, 450 (1990).

6. G. R. Smith, P. N. Brown, R. B. Campbell, D. A. Knoll, P. R. McHugh, M. E. Rensink, and T. D. Rognlien,
Techniques and results of tokamak-edge simulation,J. Nucl. Mater. 220–222, 1024 (1995).

7. D. A. Knoll and P. McHugh, NEWEDGE: A 2-D Fully Implicit Edge Plasma Fluid Code for Advanced Physics
and Complex Geometry,J. Nucl. Mater. 196–198, 352 (1992).

8. B. F. Smith, P. E. Bjorstad, and W. D. Gropp,Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations(Cambridge Univ. Press, Cambridge, UK, 1996).

9. W. D. Gropp, E. Lusk, and A. Skjellum,Using MPI Portable Parallel Programming with the Message-Passing
Interface, (MIT Press, Cambridge, MA, 1994).

10. D. A. Knoll, P. R. McHugh, and V. A. Mousseau, Newton-Krylov-Schwarz methods applied to the tokamak
edge plasma fluid equations, inDomain-Based Parallelism and Problem Decomposition Methods in Com-
putational Science and Engineering, edited by D. E. Keyes, Y. Saad, and D. G. Truhlar (Soc. for Industr. &
Appl. Math., Philadelphia, 1995), pp. 75–95.

11. Y. Saad, ILUT: A dual threshold incomplete ILU factorization,Numer. Linear Algebra Appl.1, 387 (1994).

12. Yousef Saad,Iterative Methods for Sparse Linear Systems(PWS Publishing Co., Boston, 1996).

13. S. I. Braginskii, Transport processes in a plasma, inReviews of Plasma Physics, Vol. I, edited by M. A.
Leontovich (Consultants Bureau, New York, 1965), p. 205.

14. J. A. Wesson,Tokamaks, 2nd ed. (Oxford Univ. Press, Oxford, UK, 1997).

15. C. William Gear,Numerical Initial Value Problems in Ordinary Differential Equations(Prentice-Hall,
Englewood Cliffs, NJ, 1971).

16. T. D. Rognlien, X. Q. Xu, A. C. Hindmarsh, P. N. Brown, and A. G. Taylor,Algorithms and Results for a
Parallelized Fully-Implicit Edge Plasma Code, Int. Conf. Numer. Sim. Plasmas, Feb. 10–12, 1998, Santa
Barbara, CA; LLNL Report UCRL-JC-129223-abs.

17. J. L. Luxon, P. Anderson, F. Batty,et al., Initial results from the DIII-D tokamak, inProc. 11th Int. Conf.
Plasma Phys. Controlled Nucl. Fusion(IAEA, Vienna, 1987), p. 159.

18. X. Q. Xu, R. H. Cohen, T. D. Rognlien, and J. R. Myra, Low-to-high confinement transition simulations in
divertor geometry,Phys. Plasmas7, 1951 (2000).

19. X. Q. Xu, R. H. Cohen, G. D. Porter, T. D. Rognlien, D. D. Ryutov, J. R. Myra, D. A. D’Ippolito, R. Moyer,
and R. J. Groebner, Turbulence studies in tokamak boundary plasmas with realistic divertor geometry,Nucl.
Fusion40, 731 (2000).

20. E. T. Chow, private communication (1998).

21. M. E. Rensink, L. LoDestro, G. D. Porter, T. D. Rognlien, and D. P. Coster, A comparison of neutral gas
models for divertor plasmas,Contrib. Plasma Phys. 38, 325 (1998).

22. D. Reiter, Progress in two-dimensional edge plasma modeling,J. Nucl. Mater. 196–198, 80 (1992).

23. N. Mattor, T. J. Williams, and D. W. Hewett, Algorithm for solving tridiagonal matrix problems in parallel,
Parallel Comput.21, 1769 (1995).

	1. INTRODUCTION
	2. EQUATIONS, GEOMETRY, AND ALGORITHMS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	3. IMPLEMENTATION AND RESULTS FOR UEDGE
	FIG. 5.

	4. IMPLEMENTATION AND RESULTS FOR BOUT
	FIG. 6.
	TABLE I
	FIG. 7.
	FIG. 8.

	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

